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2 ‘ Agenda

HelioCon Closed-Loop Controls

* Closed loop controls and wireless test bed development at Sandia National
Laboratories solar tower facility as part of the U.S. DOE SETO HelioCon
program

* Progress of highly-flexible controls and sensors which will be communicating I
with both wired and wireless protocols.

* Software architectures utilized to determine optimal pointing of each heliostat, I
accounting for unique metrology considerations

* Wireless comms flexibility between WikF1, Mesh Networks, etc.

Overview

* Closed-Loop Controls & NSTTF Refurbishment
* Wireless Communications

* Extremum Seeking Control Development

* Experimental Validation
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Heliostat Controls

* The operational modes:
> Wake-up mode: Heliostat moves from a stow position to a sun-tracking position

> Maintenance mode: Heliostat is available for manual operation and mechanical and electronic
maintenance

> Stow mode: Heliostat is in a storm-protection position
> Tracking mode: Heliostat tracks the sun

o Calibration mode: Heliostat error vector is able to be auto calibrated.

*  Movement by two-axis motorized system, controlled by computer.

> Computer given latitude/longitude of heliostat's position and time/date. Using astronomical theory,
controller calculates sun direction (e.g. its compass bearing and angle of elevation).

> Given direction of receiver, computer calculates required angle-bisector, & sends signals to motors.
> Sequence of operations repeated frequently with high resolution to keep the mirror properly oriented.

o Traditionally, primary rotational axis is vertical and secondary is horizontal.




.| Closed-Loop Controls Overview

* Controls ensure each heliostat tracks angle bisector & controls flux between sun
and receiver

* Closed-loop systems possess beam characterization system, provides feedback
based on heliostat’s receiver aiming.

* Closed-loop control enables automatic calibration as part of commissioning and
fine calibration on a daily or even more frequent basis.

» Hardware to enable closed-loop heliostat control capable of feedback for plant-
level control

* Software able to decide which heliostats aim at receiver to maximize flux

* Goal to decrease commissioning and O&M cost/increase plant performance.
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‘ Controls & Comms Challenges

Wireless systems approaches must be broadly introduced to capitalize on lower plant cost while
wireless risks and technical 1ssues must be avoided. Standardized requirements & testing
capabilities are needed.

Closed loop control must be more broadly applied to achieve higher flux performance and auto
alignhment/ calibration processes.

Robust signal communication R&D needed for resilient wireless controls. R&D needed for
wireless advanced controls architectures and hardware for facilitating single node or mesh
networking,

Reliability research of current interconnection hardware with respect to signal distribution
under varying controls scenarios.

Need for a Closed-Loop Controls & Wireless Test Bed
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‘ Controls Test Bed Development
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B‘Communications Test Bed Development

Facilitated benchtop testing for 2.4 GHz Phoenix |
Contact wireless modules and continued to verify ‘ —
the functionality of using a pseudo-mesh network. T S—
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Each Phoenix Contact 2100 relays 36 individual
Phoenix Contact 1100 heliostat signals for full
heliostat field coverage.

Pseudo-mesh signals transmitted to in-field UISP
airMAX 2.4 GHz antenna.

| Heliostat Field B

Six 1100 modules connecting to one 2100 module

were used in the successful benchtop testing; e o

WLAN SWITCH —

W

Roof of 9981

Significance & Impact (“so what”)
* New heliostat comms capability for lab I
* Potential cost/energy savings for deployments I

* Ability to rapidly screen comms technologies



Wireless Communications Development

* Feld tests completed to evaluate signal quality of UISP airMAX 2.4 GHz antennas.

* Antennas used as bridge between control tower and Phoenix Contact 2100 modules in
heliostat field.

* Initial field tests run from ground level, placing field antenna at transformer station East of
heliostat field & installing control room antenna at SWEPT lab.

* SWEPT lab used as comms station, imitating control room, with antenna hooking up to the
TP-Link AXE5400 Wifi router purchased for the updated control room.

* Locations for antenna chosen to maximize distance between them to show effects on signal
quality.

* Both kept at ground level to see how foliage, structures, and barriers effect signal strength.




»1 WiF1 Communications Development

Phoenix Contact wireless modules & antennas with proved functionality of entire Wi-Fi system.

Phoenix Contact 1100 modules paired to one Phoenix Contact 2100 module, relayed signal to field antenna.
Phoenix Contact 1100’s placed at heliostats 12E3 and 12W3, with Phoenix Contact 2100 at center of row 12.
Signal quality between antennas tested with rows 13 and 14 in “face south” position for increased potential
signal disruption.

Test was successful, with data transmission from Phoenix Contact 1100 modules being received at control
room antenna.
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y ‘ Communications Test Bed Development

*  With successful Wi-Fi combined system field tests, control room antenna moved to its permanent location,
atop the control room

> This will allow for continual Wi-Fi tests to be performed inside the control room tower, allowing for the
most accurate representation of how the system will be run during regular heliostat operations.
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12‘ Baseline Closed-L.oop Controls

Developed control room architecture to be flexible with different closed loop controls algorithms.

Developed a base line extremum seeking closed loop controls algorithm to test overall software architecture
and to be a nominal approach to serve as a baseline to compare to other commercial or R&D approaches.

Baseline closed-loop control algorithm uses batch least squares to calculate the gradient and calculate a new
reference position for the system using power data from a BCS camera.

When system moves to new reference position, process starts again.

Algorithm continues until it finds a position where gradient is zero, which is peak of a unimodal
distribution. I i

To test any algorithm, small-scale test bed constructed
using three motors to move a BCS camera on two axes,
a flashlight, and a Laplacian target that hangs above the
camera.

ST

Flashlight points at Laplacian target and creates a ; ey T we—
p = 1 . ResetTCP

distribution of intensity values that can be measured by
the BCS camera.




13‘ Small Scale |

* To validate the real time optimization algorithm,
the NSTTF has built a small scale experimental
setup to test closed-loop control algorithms
before putting them on a heliostat

o This allows the NSTTF to validate any algorithm that
researchers would like to test on the heliostat field

o This ensures that the algorithms will not damage heliostats at

the NSTTF

o The NSTTF has used the small scale experimental setup to
validate the RTO algorithm before heliostat testing

The small scale setup uses three motors to move
a BCS camera along two axes, with the BCS
camera being mounted on the X-axis motor

A Laplacian target is held above the BCS camera

and motor setup

o This allows us to simulate a sunspot using a flashlight

The distances and velocities are measured in
number of pixels and pixels/second, respectively

o Using System ID, the velocity of the motors was found
to be 15.5 pixels/second

The system has a

roportional controller that uses

pixel distance and the velocity of the motors to
calculate the amount of time to run the motors in

each direction

“xperimental Setup

W-Axis
Motor

_ Y-Axis

] ___:;" Motors




14‘ Closed-Loop Controls Screening Test Bed

LABVIEW code takes an image, runs algorithm, and
moves motors.

Algorithm outputs new pixel location used to tell
motors what direction to move and for how long;
Using this and new pixel location, it can be calculated

how long the motors need to move.

Small-scale test bed constructed using three motors to
move a BCS camera on two axes, a flashlight, and a

Laplacian target that hangs above the camera.

Working with linear matrix inequality (LMI) and
software-defined parameters (SDP) methods to find a

gain that optimizes performance.
Developed a base line extremum seeking closed loop
controls algorithm to test overall software architecture

and to be a nominal approach to serve as a baseline to
compare to other commercial or R&D approaches.

Significance & Impact
* Novel way to screen controls architectures prior to heliostat evaluation.
e Ability to de-risk controls that could damage heliostats




| Baseline Closed-Loop Controls

To optimize performance of code, gain can be altered.

Working with linear matrix inequality (LMI) and software-defined parameters (SDP) methods to find a gain that

optimizes performance.

Many gains that stabilize system, meaning peak value of distribution is reached.

Developing method to find a gain that stabilizes the system, is robust to varying distributions, and optimizes

performance.

Three simulations; the first two having oblong distributions and last one having a more uniform distribution. For
each simulation, the distribution and start position are randomized.

In all simulations, system lags behind reference positions because system takes time to reach each reference.
Each simulation shows the system being stabilized and the peak power being reached.

/,"5:.";{‘;3‘{‘&‘\‘\\\
//’,;:ff:’::‘:‘“‘:\“tak\‘
AN AR
AR

\s‘\\\\\é\\

First BLS Output Finding Optimal Location.

20

40

50

10

20

30

40

50

Position

] 10 20

30

40

Second BLS Output Finding Optimal Location.

30

40




.| Architecture Block Diagram

H(s) is the MIMO transfer function of the heliostat
o Input: Desired Azimuth and Elevation angle
o Output: Actual Azimuth and Elevation angle

Xip+1 = Ax, + Br

Yk = Cxy
The power function P(y) is a nonlinear, non-dynamic reward
tanction Plant
o Input: Actual Azimuth and Elevation angle Open-loop 1 y " Power
o Output: Power O— H(s) P@y)
1 * - * X :
Py) =exp(—;(—r)'T'O—7) | e
Gradient Estimator
. ) Controller
o We use the real-time dataset below to provide -~ "7"7"="-----

Pf h | Integrator i Gradi 1Eb 1
= e =P ' . : L BEstimatl
{ irYi ?,_1 where PL' (yi) : : Tadien 1mator

o We can estimate VP(y) using a Taylor series =~~~
expansion
P,=P@) +VP) (v, —y) = 6",
o2l o i)
o=yl VP@G)
The controller uses the gradient to generate a new reference
using the steepest ascent optimization algorithm
T‘k+1 = rk + FVP
Tky1 =7 when VP =0



. ‘ Challenges

The power distribution is not known
beforehand; therefore, the true gradient cannot
be calculated and must be estimated. Since this
is a data-driven method, measurement noise

. . . . | Separation
impacts the gradient estimation. A — Jts—"
/ R

i i i i L~ \
Disturbances, such as wind, impact the heliostat Sl }
alionment : NN

\"J o ~ S~ .y
. //{:\9 [‘;\\.\\--.: ——

The feedback-loop can go unstable with e g AN i R e

improper choice of the gain F.

The feedback-loop can go unstable if our initial
setpoint is too far from the optimal.



‘ Heliostat Simulation Model

* H(s) state-space
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‘ Single Heliostat Closed-Loop Controls Test Plan

* Test Plan (8 tests total)
0 4 Tests of one directional moves
0 4 Tests of two directional moves

o All Tests will start using the open loop to get a single heliostat on target and then moving it manually off of the
center to the desired location for each test.

o Once moved off center the Closed Loop system will be used to move the spot to the optimal reference
*  Goals of Testing

o Ensure that RTO algorithm tracks in all directions

o Ensure that RTO algorithm is stable when tracking in all directions.

o Ensure optimality of the RTO algorithm when tracking in all directions.

i [=13
Number Task

1 Move spot in the negative x direction 0.25 meters

2 Move spot in the positive x direction 0.25 meters

3 Move spot in the negative z direction 0.25 meters

4 Move spot in the positive z direction 0.25 meters

5 Move spot in the negative x direction 0.25 meters and negative z direction 0.25
meters

6 Move spot in the negative x direction 0.25 meters and positive z direction 0.25
meters

7 Move spot in the positive x direction 0.25 meters and positive z direction 0.25
meters

8 Move spot in the positive x direction 0.25 meters and negative z direction 0.25

meters




Controls Test Bed Evaluation — Single

-
Heliostat

20

*  With the updated tracking algorithm, the heliostat
does not shift back and forth on the azimuth and
elevation angle gears solving three previous
problems:

o Unnecessary movement of spot on tower
o Unnecessary wear on heliostat gearing
o Ability to stay within 0.02 degrees of desired location

*  Smooth transition from high speed on approach to
BCS into tracking
o No overcorrection i1ssues

o Current draw well within acceptable range for highest speeds
produced




‘ Field Test

First beam on tower with new
software

Excellent resolution

5 minute, 10 minute, and 20

minute tests recorded in control
room with beam tracking;
High precision and accuracy

o Throughout recording period the beam
never lagged more than 0.02 degrees
from the desired location.




‘ Actual Heliostat Closed Loop
Controls Test Offset
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‘ NSTTF Initial Pointing Corrections

Utilizing HelioCon Controls Tools

Extremely accurate pointing required for NASA testing,
where Heliocon Controls and Metrology tools are utilized for

NSTTF tower top flux evaluations.

5E09 before

Before:

Initial work facilitated in batch process, though automation is
also being developed for improving the pointing.

e PQE
006509 e

5W01 before

9W01 before

4W01 before

Improvements made that contributed to min. 30% improved
flux values already. Further testing is required to complete the

5E09 after

flux corrections to achieve a min. 220 W/cm? goal.

After:

Significance & Impact

Ability to rapidly improve flux pointing with closed
loop controls and optical metrology.

Ability to achieve high flux levels needed for
industrial process heat applications.
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‘ Positions

Normalized Heliostat Spots at Observation 1
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Corrected Spots after Controls
Algorithm Implementation
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| Conclusions & Future Work

* NSTTF Heliostat Field Controls/Comms Refurbishment to support G3P3.
* DOE Heliocon Closed-Loop Controls Test Bed Architecture Development.

* Closed-Loop Controls algorithm development based on initial hybrid Least Squares Law &
Open Loop initialization,

* Heliocon RFP projects to support Wireless Mesh Network Communication hardware and
software protocol development

* Future work required to obtain training controls data for improving pointing and controls.

* Looking for users of the Closed-Loop Controls and Wireless Heliostat Field test bed.
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